Structure-activity relationships of Au-Pd single-atom alloys for selective oxidation studied by EXAFS

Cody J. Wrasmana, Alexey Boubnovb, Adam S. Hoffmanna, Matteo Cargnelloa, Simon R. Barerb

SUNCAT Center for Interface Science and Catalysis, Stanford, CA 94305, USA
Stanford Synchrotron Radiation Lightsource (SSRL), Menlo Park, CA 94025, USA
aboubnov@slac.stanford.edu

Introduction
The splitting of hydrogen is a limiting step both in selective hydrogenation and selective oxidation reactions on coinage metals such as Au or Cu [1], which show promise for the purification of ethylene or the production of propylene oxide. Single-atom alloys (SAA) of platinum-group metals in coinage metals have superior activity and selectivity for selective hydrogenation reactions, where single platinum-group atoms split the hydrogen. Likewise, selective oxidation, e.g. of propylene to propylene oxide over Au/TiO2 [2] can potentially be improved by implementing SAA to split hydrogen from a co-feed of hydrogen and oxygen to create peroxide intermediates. In this work, we correlate the nuclearity of Pd-Au SAA nanoparticles studied by EXAFS to performance in selective oxidation of isopropanol to acetone as a probe reaction for the formation of peroxide intermediates.

Methods
Pd-Au SAA nanoparticles (Pd: Au ratios 1:70 and 1:13) and monometallic Au and Pd nanoparticles were synthesized using an Au seed-mediated colloidal technique, loaded onto TiO2 and heat-treated to remove ligands remaining from synthesis. Conversion of isopropanol to acetone with oxygen was tested with and without hydrogen. EXAFS spectra were recorded at SSRL at wiggler beamline 9-3 at the Pd K-edge (24350 eV) and Au L3-edge (11919 eV) in fluorescence mode, using a 100-element Ge detector (Canberra). Samples were loosely pressed inside an in situ XAS flow cell [3] with Kapton windows. Heating up to 350°C by two cartridge heaters was controlled using a thermocouple near the catalyst.

Results and discussion
The catalytic conversion of isopropanol to acetone increased with increasing Pd in the absence of hydrogen at temperatures below 150°C. In the presence of hydrogen, conversion increased over all catalysts, likely due to the creation of peroxide intermediates. This increase was greatest for Pd-Au SAA nanoparticles, which also showed superior selectivity to monometallic Pd and Au. EXAFS has revealed that a Pd: Au molar ratio of 1:13 led to isolated Pd atoms in the Au matrix, correlating to a high oxidation selectivity. With higher ratios, Pdx entities segregated within the Au matrix, causing a loss of reaction selectivity.

Conclusion
The superior activity of Pd-Au SAA nanoparticles towards oxidation of isopropanol to acetone suggests a synergy between single Pd atoms to split hydrogen, and Au nanoparticles to create peroxides. This work brought us further to understanding selective oxidation over SAA systems.