Electronic and local structure of CaBaCo$_{4-x}$M$_x$O$_7$ (M= Fe, Zn) revealed by X-ray absorption spectroscopy.

J. Blasco1, V. Cuartero2, G. Subías1, J. García1, J. A. Rodríguez-Velamazán3, C. Ritter3

(1) Instituto de Ciencia de Materiales de Aragón, Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain)
(2) ESRF-The European Synchrotron, Grenoble (France)
(3) Institut Laue-Langevin, Boîte Postale 156, 38042 Grenoble (France)

jbc@unizar.es

Magnetoelectric materials attract a great interest due to their wide applications in spintronics. Most of them are based on transition metal oxides with polar structures showing magnetic frustration. This is the case for CaBaCo$_4$O$_7$, which is ferrimagnetic below T_c=64K and also shows a linear magnetoelectric coupling below this temperature [1]. Ab-initio calculations proved that the material is pyroelectric, and the large pyroelectric currents observed were ascribed to exchange-striction effects. It adopts an orthorhombic unit cell (space group $Pbn2_1$). The crystallographic structure of CaBaCo$_4$O$_7$ consists of a stacking of alternating triangular (T) and kagomé (K) layers of CoO$_4$ tetrahedra along the c axis. There are four different crystallographic sites for Co: Co1 stays at the T layer, while Co2, Co3, and Co4 are in the K layers [1] and ferrimagnetism appears because the magnetic moments at the Co1 and Co4 sites are larger than those at the Co2 and Co3 sites. The stoichiometric formula corresponds to CaBaCo$_2^{2+}$Co$_3^{3+}$O$_7$ and therefore the nominal oxidation state for Co is 2.5+. Furthermore, the substitution of Co with another transition metal may be useful to increase the transition temperature and magnetic coupling.

To fully characterize the tetrahedral distortion on CaBaCo$_4$O$_7$ and the effects of doping with Fe and Zn on Co sublattice, we performed XAS measurements as a function of temperature on Co, Fe and Zn K edges at BM23 at the ESRF (Grenoble, France). CaBaCo$_{4-x}$Fe$_x$O$_7$ (x=0.5, 1, 1.5, 2) and CaBaCo$_{4-x}$Zn$_x$O$_7$ (x=0, 1, 2 and y=1) samples were synthesized by solid state chemistry reactions and the resulting powders were pressed into pellets mixed with cellulose for optimized XAS transmission measurements.

From XANES, we conclude that a mixed-valence oxidation state is found for Co atom in all the studied CaBaCo$_{4-x}$M$_x$O$_7$ (M=Fe or Zn) samples, with a combination of Co$^{2+}$ and Co$^{3+}$ in their formal ionic species. Fe and Zn are incorporated as Fe$^{3+}$ and Zn$^{2+}$ in the whole series. The analysis of EXAFS measurements show that the largest Debye-Waller factors are found for the intermediate Co$^{3+/2+}$ valences, indicating either a larger distortion or the occupation of different crystallographic sites (disordered distribution).

EXAFS measurements as a function of temperature show the presence of a local disorder highly localized in the CoO$_4$ tetrahedra that remains unchanged for all the samples except for the parent CaBaCo$_4$O$_7$ compound. A small but appreciable increase in the local distortion of the CoO$_4$ tetrahedra is observed at the magneto-electric transition temperature for this sample. This reveals the occurrence of a local magneto-elastic coupling at the ferrimagnetic phase that may be related to the observation of the pyroelectric effect in this composition.

The authors acknowledge the ESRF for granting beamtime and the financial support of the Spanish Ministerio de Economía y Competitividad, Project MAT2015-68760-C2-1-P.