Role of electronic and atomic properties in an XY-like spin-glass system
Ni$_{0.4}$Mn$_{0.6}$TiO$_3$

Shang-Hsien Hsieh1, Ravindra Singh Solanki2, Tsuyoshi Kimura3, Hong-Ji Lin4, Jyh-Fu Lee4, Di-Jing Huang4, and Way-Faung Pong1

1Department of Physics, Tamkang University, Tamsui 251, Taiwan
2Centre of Material Sciences, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
3Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
4National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan

e-mail: Steven22455337@gmail.com

Abstract
Recent discovery of XY-like spin-glass on single crystal Ni$_{0.4}$Mn$_{0.6}$TiO$_3$ (NMTO) introduces linear magnetoelectric coupling and toroidal moment. Generally, combination of the competing exchange interactions and either site or bond disorder can give rise to a spin glass state. We have used synchrotron techniques like x-ray absorption near-edge structure (XANES), extended x-ray absorption fine structure (EXAFS) and resonant inelastic x-ray scattering (RIXS) to investigate the roles of electronic and atomic properties in the XY-like spin-glass system. Magnetization measurements reveal the signatures of spin-glass behavior in the NMTO with a freezing temperature of $T_{SG} \approx 9.1$ K. RIXS experiments provide the evidence of d-d excitations at Ni and Mn L_3-edge. These excitations at Ni L_3-edge are strongly dependent on the excitation energies; however they are almost independent for Mn L_3-edge. Further, these inelastic features show stronger intensities than elastic peaks at Ni L_3-edge, which indicate high probability of d-d excitations at Ni 3d orbitals. Using temperature dependent XANES, x-ray linear dichroism (XLD) and EXAFS studies along with RIXS, it has been shown that the preferential occupation of orbitals from out-of-plane states ($3d_{3z^2-r^2}$) to in-plane ($3d_{x^2-y^2}$) the due to local disorder of Ni-O bond lengths. We therefore believe that XY-like spin glass state of NMTO is associated with the unoccupied in-plane ($3d_{x^2-y^2}$) states.